Ensemble forecasting

نویسندگان

  • Martin Leutbecher
  • Tim N. Palmer
چکیده

Numerical weather prediction models as well as the atmosphere itself can be viewed as nonlinear dynamical systems in which the evolution depends sensitively on the initial conditions. The fact that estimates of the current state are inaccurate and that numerical models have inadequacies, leads to forecast errors that grow with increasing forecast lead time. The growth of errors depends on the flow itself. Ensemble forecasting aims at quantifying this flow-dependent forecast uncertainty. The sources of uncertainty in weather forecasting are discussed. Then, an overview is given on evaluating probabilistic forecasts and their usefulness compared with single forecasts. Thereafter, the representation of uncertainties in ensemble forecasts is reviewed with an emphasis on the initial condition perturbations. The review is complemented by a detailed description of the methodology to generate initial condition perturbations of the Ensemble Prediction System (EPS) of the European Centre for Medium-Range Weather Forecasts (ECMWF). These perturbations are based on the leading part of the singular value decomposition of the operator describing the linearised dynamics over a finite time interval. The perturbations are flow-dependent as the linearisation is performed with respect to a solution of the nonlinear forecast model. The extent to which the current ECMWF ensemble prediction system is capable of predicting flow-dependent variations in uncertainty is assessed for the large-scale flow in mid-latitudes. 2007 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neural Network Ensemble-Based Solar Power Generation Short-Term Forecasting

This paper presents the applicability of artificial neural networks for 24 hour ahead solar power generation forecasting of a 20 kW photovoltaic system, the developed forecasting is suitable for a reliable Microgrid energy management. In total four neural networks were proposed, namely: multi-layred perceptron, radial basis function, recurrent and a neural network ensemble consisting in ensembl...

متن کامل

Implementation and Evaluation of a Mesoscale Short-Range Ensemble Forecasting System Over the Pacific Northwest

Implementation and Evaluation of a Mesoscale Short-range Ensemble Forecasting System over the Pacific Northwest

متن کامل

Uncertainty assessment via Bayesian revision of ensemble streamflow predictions in the operational river Rhine forecasting system

[1] Ensemble streamflow forecasts obtained by using hydrological models with ensemble weather products are becoming more frequent in operational flow forecasting. The uncertainty of the ensemble forecast needs to be assessed for these products to become useful in forecasting operations. A comprehensive framework for Bayesian revision has been recently developed and applied to operational flood ...

متن کامل

A Reliability-Based RBF Network Ensemble Model for Foreign Exchange Rates Predication

In this study, a reliability-based RBF neural network ensemble forecasting model is proposed to overcome the shortcomings of the existing neural ensemble methods and ameliorate forecasting performance. In this model, the ensemble weights are determined by the reliability measure of RBF network output. For testing purposes, we compare the new ensemble model’s performance with some existing netwo...

متن کامل

Using Weather Ensemble Predictions in Electricity Demand Forecasting

Weather forecasts are an important input to many electricity demand forecasting models. This study investigates the use of weather ensemble predictions in electricity demand forecasting for lead times from one to 10 days ahead. A weather ensemble prediction consists of 51 scenarios for a weather variable. We use these scenarios to produce 51 scenarios for the weather-related component of electr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Physics

دوره 227  شماره 

صفحات  -

تاریخ انتشار 2008